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Abstract In connection with the theory of p-harmonic mappings, Eells and
Lemaire raised a question about density of smooth mappings in the space
of Sobolev mappings between manifolds. Recently Hang and Lin provided a
complete solution to this problem. The theory of Sobolev mappings between
manifolds has been extended to the case of Sobolev mappings with values
into metric spaces. Finally analysis on metric spaces, the theory of Carnot–
Carathéodory spaces, and the theory of quasiconformal mappings between
metric spaces led to the theory of Sobolev mappings between metric spaces.
The purpose of this paper is to provide a self-contained introduction to the
theory of Sobolev spaces between manifolds and metric spaces. The paper
also discusses new results of the author.

1 Introduction

For Ω ⊂ Rn and 1 6 p < ∞ we denote by W 1,p(Ω) the usual Sobolev space
of functions for which ‖u‖1,p = ‖u‖p + ‖∇u‖p < ∞. This definition can
easily be extended to the case of Riemannian manifolds W 1,p(M). Let now
M and N be compact Riemannian manifolds. We can always assume that
N is isometrically embedded in the Euclidean space Rν (Nash’s theorem).
We also assume that the manifold N has no boundary, while M may have
boundary. This allows one to define the class of Sobolev mappings between
the two manifolds as follows:

W 1,p(M, N) = {u ∈ W 1,p(M,Rν)| u(x) ∈ N a.e.}
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W 1,p(M, N) is equipped with the metric inherited from the norm %(u, v) =
‖u − v‖1,p. The space W 1,p(M, N) provides a natural setting for geometric
variational problems like, for example, weakly p-harmonic mappings (called
weakly harmonic mappings when p = 2). Weakly p-harmonic mappings are
stationary points of the functional

I(u) =
∫

M

|∇u|p for u ∈ W 1,p(M,N).

Because of the constrain in the image (manifold N) one has to clarify how the
variation of this functional is defined. Let U ⊂ Rν be a tubular neighborhood
of N , and let π : U → N be the smooth nearest point projection. For ϕ ∈
C∞0 (M,Rν), and u ∈ W 1,p(M,N) the mapping u+ tϕ takes on values into U
provided that |t| is sufficiently small. Then we say that u is weakly p-harmonic
if

d

dt

∣∣∣
t=0

I(π(u + tϕ)) = 0 for all ϕ ∈ C∞0 (M,Rν).

The condition that the mappings take values into the manifold N is a con-
strain that makes the corresponding Euler-Lagrange system

−div (|∇u|p−2∇u) = |∇u|p−2A(u)(∇u,∇u), (1.1)

very nonlinear and difficult to handle. Here, A is a second fundamental form
of the embedding of N into the Euclidean space (see, for example, [4, 16, 34,
41, 42, 48, 65, 69, 79, 80, 83, 84]). There is a huge and growing literature
on the subject, and it is impossible to list here all relevant papers, but the
reader can easily find other papers following the references in the papers cited
above.

Our main focus in this paper is the theory of Sobolev mappings between
manifolds, and later, the theory of Sobolev mappings between metric spaces,
rather than applications of this theory to variational problems, and the above
example was just to illustrate one of many areas in which the theory applies.

In connection with the theory of p-harmonic mappings, Eells and Lemaire
[18] raised a question about density of smooth mappings C∞(M, N) in
W 1,p(M, N). If p > n = dim M , then smooth mappings are dense in
W 1,p(M, N) [73, 74], but if p < n, the answer depends on the topology of
manifolds M and N . Recently, Hang and Lin [39] found a necessary and suf-
ficient condition for the density in terms of algebraic topology. Their result is
a correction of an earlier result of Bethuel [3] and a generalization of a result
of HajÃlasz [26]. To emphasize the connection of the problem with algebraic
topology, let us mention that it is possible to reformulate the Poincaré conjec-
ture (now a theorem) in terms of approximability of Sobolev mappings [25].
The theory of Sobolev mappings between manifolds has been extended to the
case of Sobolev mappings with values into metric spaces. The first papers on
this subject include the work of Ambrosio [2] on limits of classical variational
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problems and the work of Gromov and Schoen [24] on Sobolev mappings into
the Bruhat–Tits buildings, with applications to rigidity questions for discrete
groups. Later, the theory of Sobolev mappings with values into metric spaces
was developed in a more elaborated form by Korevaar and Schoen [55] in
their approach to the theory of harmonic mappings into Alexandrov spaces
of nonpositive curvature. Other papers on Sobolev mappings from a manifold
into a metric space include [12, 17, 49, 50, 51, 52, 70, 76]. Finally, analysis on
metric spaces, the theory of Carnot–Carathéodory spaces, and the theory of
quasiconformal mappings between metric spaces led to the theory of Sobolev
mappings between metric spaces [46, 47, 58, 81], among which the theory of
Newtonian–Sobolev mappings N1,p(X,Y ) is particularly important.

In Sect. 2, we discuss fundamental results concerning the density of smooth
mappings in W 1,p(M,N). Section 3 is devoted to a construction of the class
of Sobolev mappings from a manifold into a metric space. We also show there
that several natural questions to the density problem have negative answers
when we consider mappings from a manifold into a metric space. In Sect. 4,
we explain the construction and basic properties of Sobolev spaces on metric
measure spaces and, in final Sect. 5, we discuss recent development of the
theory of Sobolev mappings between metric spaces, including results about
approximation of mappings.

The notation in the paper is fairly standard. We assume that all manifolds
are compact (with or without boundary), smooth, and connected. We always
assume that such a manifold is equipped with a Riemannian metric, but
since all such metrics are equivalent, it is not important with which metric
we work. By a closed manifold we mean a smooth compact manifold without
boundary. The integral average of a function u over a set E is denoted by

uE =
∫
−
E

u dµ = µ(E)−1

∫

E

u dµ .

Balls are denoted by B and σB for σ > 0 denotes the ball concentric with
B whose radius is σ times that of B. The symbol C stands for a general
constant whose actual value may change within a single string of estimates.
We write A ≈ B if there is a constant C > 1 such that C−1A 6 B 6 CA.

2 Sobolev Mappings between Manifolds

It is easy to see and is well known that smooth functions are dense in the
Sobolev space W 1,p(M). Thus, if N is isometrically embedded into Rν , it fol-
lows that every W 1,p(M, N) mapping can be approximated by C∞(M,Rν)
mappings and the question is whether we can approximate W 1,p(M, N) by
C∞(M, N) mappings. It was answered in the affirmative by Schoen and Uh-
lenbeck [73, 74] in the case p > n = dim M .
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Theorem 2.1. If p > n = dim M , then the class of smooth mappings
C∞(M, N) is dense in the Sobolev space W 1,p(M,N).

Proof. 1 Assume that N is isometrically embedded in some Euclidean space
Rν . If p > n, then the result is very easy. Indeed, let uk ∈ C∞(M,Rν) be a
sequence of smooth mappings that converge to u in the W 1,p norm. Since p >
n, the Sobolev embedding theorem implies that uk converges uniformly to u.
Hence for k > k0 values of the mappings uk belong to a tubular neighborhood
U ⊂ Rν of N from which there is a smooth nearest point projection π : U →
N . Now π ◦ uk ∈ C∞(M,N) and π ◦ uk → π ◦ u = u in the W 1,p norm.
If p = n, then we do not have uniform convergence, but one still can prove
that the values of the approximating sequence uk whose construction is based
locally on the convolution approximation belong to the tubular neighborhood
of N for all sufficiently large k. This follows from the Poincaré inequality. To
see this, it suffices to consider the localized problem where the mappings
are defined on an Euclidean ball. Let u ∈ W 1,n(Bn(0, 1), N), and let u be
the extension of u to a neighborhood of the ball (by reflection). We define
uε = u∗ϕε, where ϕε is a standard mollifying kernel. The Poincaré inequality
yields




∫
−

Bn(x,ε)

|u(y)− uε(x)|n dy




1/n

6 Cr




∫
−

Bn(x,ε)

|∇u|n



1/n

= C ′




∫

Bn(x,ε)

|∇u|n



1/n

. (2.1)

The right-hand side (as a function of x) converges to 0 as ε → 0 uniformly
on Bn(0, 1). Since

dist (uε(x), N) 6 |u(y)− uε(x)|

for all y, from (2.1) we conclude that

dist (uε(x), N) → 0 as ε → 0

uniformly on Bn(0, 1). Hence for ε < ε0 values of the smooth mappings uε

belong to U and thus π ◦ uε → π ◦ u = u as ε → 0. ut

Arguments used in the above proof lead to the following result.

1 See also Theorems 3.7 and 5.5.
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Proposition 2.2. If u ∈ W 1,p(M,N) can be approximated by continuous
Sobolev mappings C0 ∩W 1,p(M, N), then it can be approximated by smooth
C∞(M, N) mappings.

Proof. Indeed, if v ∈ C0 ∩ W 1,p(M,N), then vε ⇒ v uniformly and hence
π ◦ vε → π ◦ v = v in W 1,p. ut

A basic tool in the study of Sobolev mappings between manifolds is a
variant of the Fubini theorem for Sobolev functions. Let us illustrate it in
a simplest setting. Suppose that u, ui ∈ W 1,p([0, 1]n), ‖u − ui‖1,p → 0 as
i → ∞. Denote by (t, x), where t ∈ [0, 1], x ∈ [0, 1]n−1, points in the cube.
Then

∫

[0,1]n

|u− ui|p + |∇u−∇ui|p

=

1∫

0




∫

[0,1]n−1

|u− ui|p + |∇u−∇ui|p dx


 dt

=

1∫

0

Fi(t) dt
i→∞−→ 0 .

Hence Fi → 0 in L1(0, 1) and so there is a subsequence uij such that Fij (t) →
0 for almost all t ∈ (0, 1). That means that for almost all t ∈ [0, 1] we
have u(t, ·), uij (t, ·) ∈ W 1,p([0, 1]n−1) and uij (t, ·) → u(t, ·) in W 1,p([0, 1]n−1).
Clearly, the same argument applies to lower dimensional slices of the cube.

As was already pointed out, if p < n = dim M , then density of smooth
mappings does not always hold. The first example of this type was provided by
Schoen and Uhlenbeck, and it is actually quite simple. A direct computation
shows that the radial projection

u0(x) = x/|x| : Bn(0, 1) \ {0} → Sn−1

belongs to the Sobolev space W 1,p(Bn, Sn−1) for all 1 6 p < n. Shoen and
Uhlenbeck [73, 74] proved the following assertion.

Theorem 2.3. If n−1 6 p < n, then the mapping u0 cannot be approximated
by smooth mappings C∞(Bn, Sn−1) in the W 1,p norm.

Proof. Suppose that there is a sequence uk ∈ C∞(Bn, Sn−1) such that ‖uk−
u0‖1,p → 0 as k → ∞ for some n − 1 6 p < n. Then from the Fubini
theorem it follows that there is a subsequence (still denoted by uk) such that
for almost every 0 < r < 1
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uk|Sn−1(0,r) → u0|Sn−1(0,r)

in the W 1,p(Sn−1(0, r)) norm. If n− 1 < p < n, then the Sobolev embedding
theorem into Hölder continuous functions implies that uk restricted to such
spheres converges uniformly to u0

uk|Sn−1(0,r) ⇒ u0|Sn−1(0,r),

which is impossible because the Brouwer degree2 of uk|Sn−1(0,r) is 0 and
the degree of u0|Sn−1(0,r) is 1. The case p = n − 1 needs a different, but
related argument. The degree of a mapping v : M → N between two oriented
(n− 1)-dimensional compact manifolds without boundary can be defined by
the integral formula

deg v =
∫

M

det Dv/volN,

and from the Hölder inequality it follows that the degree is continuous in the
W 1,n−1 norm. This implies that if uk → u0 in W 1,n−1(Sn−1(0, r)), then the
degree of uk|Sn−1(0,r) which is 0 converges to the degree of u0|Sn−1(0,r) is 1.
Again we obtain a contradiction. ut

It turns out, however, that for 1 6 p < n − 1 smooth maps are dense
in W 1,p(Bn, Sn−1). Indeed, the following result was proved by Bethuel and
Zheng [5].

Theorem 2.4. For 1 6 p < k smooth mappings C∞(M, Sk) are dense in
W 1,p(M, Sk).

Proof. Let u ∈ W 1,p(M, Sk). It is easy to see that for every x ∈ Sk and δ > 0
there is a Lipschitz retraction πx,δ : Sk → Sk \ B(x, δ), i.e., πx,δ ◦ πx,δ =
πx,δ, with the Lipschitz constant bounded by Cδ−1. Now we consider the
mapping ux,δ = πx,δ ◦ u. Since ux,δ maps M into the set Sk \ B(x, δ) which
is diffeomorphic with a closed k dimensional ball, it is easy to see that ux,δ

can be approximated by smooth maps from M to Sk \ B(x, δ) ⊂ Sk. Thus,
it remains to prove that for every ε > 0 there is δ > 0 and x ∈ Sk such that
‖u− ux,δ‖1,p < ε.

There are Cδ−k disjoint balls of radius δ on Sk. Such a family of balls is
denoted by B(xi, δ), i = 1, 2, . . . , Nδ, where Nδ ≈ δ−k. Note that the mapping
uxi,δ differs from u on the set u−1(B(xi, δ)) and this is a family of Nδ ≈ δ−k

disjoint subset of M . Therefore, there is i such that
∫

u−1(B(xi,δ))

|u|p + |∇u|p 6 Cδk‖u‖p
1,p.

2 The degree is 0 because uk has continuous (actually smooth) extension to the entire ball.



Sobolev Mappings between Manifolds and Metric Spaces 191

Using the fact that the Lipschitz constant of πxi,δ is bounded by Cδ−1, it is
easy to see that

∫

u−1(B(xi,δ))

|∇uxi,δ|p 6 Cδ−p

∫

u−1(B(xi,δ))

|∇u|p 6 Cδk−p‖u‖p
1,p

Since u = uxi,δ on the complement of the set u−1(B(xi, δ)), we have

‖∇u−∇uxi,δ‖p =




∫

u−1(B(xi,δ))

|∇u−∇uxi,δ|p



1/p

6




∫

u−1(B(xi,δ))

|∇u|p



1/p

+




∫

u−1(B(xi,δ))

|∇uxi,δ|p



1/p

6 C(δk/p + δ(k−p)/p)‖u‖1,p .

Since k − p > 0, this implies that for given ε > 0 there is δ > 0 and x ∈ Sk

such that ‖∇u−∇ux,δ‖1,p < ε. It remains to note that the mappings u and
ux,δ are also close in the Lp norm. Indeed, they are both uniformly bounded
(as mappings into the unit sphere) and they coincide outside a set of very
small measure. ut

The above two results show that the answer to the problem of density of
smooth mappings in the Sobolev space W 1,p(M, N) depends of the topology
of the manifold N and perhaps also on the topology of the manifold M . We
find now necessary conditions for the density of C∞(M, N) in W 1,p(M,N).

The density result (Theorem 2.1) implies that if M and N are two smooth
oriented compact manifolds without boundary, both of dimension n, then
we can define the degree of mappings in the class W 1,n(M, N). Indeed, if
u ∈ C∞(M, N), then the degree is defined in terms of the integral of the
Jacobian and then it can be extended to the entire space W 1,n(M, N) by the
density of smooth mappings. Thus,

deg : W 1,n(M, N) → ZZ

is a continuous function and it coincides with the classical degree on the
subclass of smooth mappings. It turns out, however, that not only degree,
but also homotopy classes can be defined. This follows from the result of
White [85].
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Theorem 2.5. Let M and N be closed manifolds, and let n = dim M . Then
for every f ∈ W 1,n(M, N) there is ε > 0 such that any two smooth mappings
g1, g2 : M → N satisfying ‖f − gi‖1,n < ε for i = 1, 2 are homotopic.

Note that Theorem 2.5 is also a special case of Theorem 2.8 and Theo-
rem 5.5 below.

We use the above result to find the first necessary condition for the density
of smooth mappings in the Sobolev space. The following result is due to
Bethuel and Zheng [5] and Bethuel [3]. A simplified proof provided below is
taken from [25]. Let [p] denote the largest integer less than or equal to p. In
the following theorem, πk stands for the homotopy group.

Theorem 2.6. If π[p](N) 6= 0 and 1 6 p < n = dim M , then the smooth
mappings C∞(M,N) are not dense in W 1,p(M, N).

Proof. It is easy to construct a smooth mapping f : B[p]+1 → S[p] with two
singular points such that f restricted to small spheres centered at the singu-
larities have degree +1 and −1 respectively and f maps a neighborhood of
the boundary of the ball B[p]+1 into a point. We can model the singularities
on the radial projection mapping as in Theorem 2.3 so the mapping f belongs
to W 1,p. Let now g : B[p]+1×Sn−[p]−1 → S[p] be defined by g(b, s) = f(b). We
can embed the torus B[p]+1 × Sn−[p]−1 into the manifold M and extend the
mapping on the completion of this torus as a mapping into a point. Clearly,
g ∈ W 1,p(M, S[p]). Let ϕ : S[p] → N be a smooth representative of a nontriv-
ial homotopy class. We prove that the mapping ϕ◦g ∈ W 1,p(M,N) cannot be
approximated by smooth mappings from C∞(M,N). By contrary, suppose
that uk ∈ C∞(M, N) converges to ϕ ◦ f in the W 1,p norm. In particular,
uk → ϕ◦g in W 1,p(B[p]+1×Sn−[p]−1, N). From the Fubini theorem it follows
that there is a subsequence of uk (still denoted by uk) such that for almost
every s ∈ Sn−[p]−1, uk restricted to the slice B[p]+1 × {s} converges to the
corresponding restriction of ϕ ◦ g in the Sobolev norm. Take such a slice and
denote it simply by B[p]+1. Again, by the Fubini theorem, uk restricted to
almost every sphere centered at the +1 singularity of f converges to the cor-
responding restriction of ϕ ◦ g in the Sobolev norm. Denote such a sphere by
S[p]. Hence uk|S[p] → ϕ ◦ g|S[p] in the space W 1,p(S[p], N). Now the mapping
uk|S[p] : S[p] → N is contractible (because it has a smooth extension to the
ball), while ϕ ◦ g|S[p] : S[p] → N is a smooth representative of a nontrivial
homotopy class π[p](N), so uk|S[p] cannot be homotopic to ϕ ◦ g|S[p] , which
contradicts Theorem 2.5. ut

It turns out that, in some cases, the condition π[p](N) = 0 is also suffi-
cient for the density of smooth mappings. The following statement is due to
Bethuel [3].

Theorem 2.7. If 1 6 p < n, then smooth mappings C∞(Bn, N) are dense
in W 1,p(Bn, N) if and only if π[p](N) = 0.



Sobolev Mappings between Manifolds and Metric Spaces 193

Actually, Bethuel [3] claimed a stronger result that π[p](N) = 0 is a nec-
essary and sufficient condition for the density of C∞(M, N) mappings in
W 1,p(M, N) for any compact manifold M of dimension dim M = n > p.
This, however, turned out to be false: Hang and Lin [38] provided a coun-
terexample to Bethuel’s claim by demonstrating that despite the equality
π3(CIP2) = 0, C∞(CIP3, CIP2) is not dense in W 1,3(CIP3, CIP2). Bethuel’s
claim made people believe that the problem of density of smooth mappings
in the Sobolev space has a local nature. However the example of Hang and
Lin and Theorem 2.7 shows that there might be global obstacles. Indeed, the
mapping constructed by Hang and Lin cannot be approximated by smooth
mappings C∞(CIP3, CIP2), however, since π3(CIP2) = 0, Theorem 2.7 shows
that this mapping can be smoothly approximated in a neighborhood of any
point in CIP3.

Therefore, searching for a necessary and sufficient condition for the den-
sity of smooth mappings, one has to take into account the topology of both
manifolds M and N , or rather the interplay between the topology of M and
the topology of N . Now we find such a necessary condition for the density
of smooth mappings. Before we start, we need to say a few words about the
behavior of Sobolev mappings on k-dimensional skeletons of generic smooth
triangulations.

Let the manifold M be equipped with a smooth triangulation Mk, k =
0, 1, 2, . . . , n = dim M . Since the skeletons of the triangulation are piecewise
smooth, it is not difficult to define the Sobolev space on skeletons W 1,p(Mk).
There is no problem with the definition of Sobolev functions in the interiors of
the simplexes, but one needs to clarify how the Sobolev functions meet at the
boundaries, so that the function belongs to the Sobolev space not only in each
of the simplexes, but on the whole skeleton Mk. One possibility is to define
the Sobolev norm ‖u‖1,p for functions u that are Lipschitz continuous on
Mk and then define W 1,p by completion. Suppose now that u ∈ W 1,p(M). If
v ∈ W 1,p([0, 1]n), then, in general, it is not true that the function v restricted
to each slice {t}× [0, 1]n−1 belongs to the Sobolev space W 1,p([0, 1]n−1), but
it is true for almost all t ∈ [0, 1]. By the same reason, u restricted to Mk

does not necessarily belong to the Sobolev space W 1,p(Mk). This problem
can, however, be handled. Indeed, faces of the k dimensional skeleton Mk can
be translated in the remaining directions which form an n − k dimensional
space. Hence, roughly speaking, with each skeleton Mk we can associate an
n − k dimensional family of skeletons.3 Now u restricted to almost every
skeleton in this family belongs to the Sobolev space W 1,p on that skeleton
by the Fubini theorem. We briefly summarize this construction by saying
that if u ∈ W 1,p(M), then u restricted to a generic k dimensional skeleton
Mk belongs to the Sobolev space W 1,p(Mk). Moreover, if u, ui ∈ W 1,p(M),
‖u − ui‖1,p → 0, then there is a subsequence uij such that uij → u in

3 This is not entirely obvious because we translate different faces in different directions
and we have to make sure that after all the faces glue together, so that we still have a
k-dimensional skeleton. This, however, can be done and there are no unexpected surprises.
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W 1,p(Mk) on generic k-dimensional skeletons. This follows from the Fubini
theorem argument explained above.

We say that two continuous mappings f, g : M → N are k-homotopic,
0 6 k 6 n = dim M , if the restrictions of both mappings to the k-dimensional
skeleton of a triangulation of M are homotopic. Using elementary topology,
one can prove that the above definition does not depend on the choice of a
triangulation of M (see [39, Lemma 2.1]). Theorem 2.5 is a special case of a
more general result of White [85].

Theorem 2.8. Let M and N be closed manifolds, and let n = dim M . Then
for every f ∈ W 1,p(M,N), 1 6 p 6 n, there is ε > 0 such that any two
Lipschitz mappings g1, g2 : M → N satisfying ‖f − gi‖1,p < ε, i = 1, 2 are
[p]-homotopic.

Another result that we frequently use is the homotopy extension theorem.
We state it only in a special case.

Theorem 2.9. Let M be a smooth compact manifold equipped with a smooth
trinagulation Mk, k = 0, 1, 2, . . . , n = dim M . Then for any topological space
X every continuous mapping

H : (M × {0}) ∪ (Mk × [0, 1]) → X

has a continuous extension to H̃ : M × [0, 1] → X.

In particular, the theorem implies that if f : M → N is continuous and
g : Mk → N is homotopic to f |Mk , then g admits a continuous extension to
g̃ : M → N . We apply this observation below.

In the proof of the necessity of the condition π[p](N) = 0, we constructed
a map with the (n − [p] − 1)-dimensional singularity. The condition we will
present now will actually imply π[p](N) = 0 and, not surprisingly, our ar-
gument will also involve a construction of a map with the (n − [p] − 1)-
dimensional singularity.

Let 1 6 p < n = dim M . Suppose that smooth mappings C∞(M,N)
are dense in W 1,p(M, N). Assume that M is endowed with a smooth tri-
angulation. Let h : M [p] → N be a Lipschitz mapping. Observe that if
f ∈ W 1,p(Sk, N), then the integration in spherical coordinates easily im-
plies that the mapping f(x) = f(x/|x|) belongs to W 1,p(Bk+1, N) provided
that p < k+1. Clearly, the ball Bk+1 can be replaced by a (k+1)-dimensional
simplex and Sk by its boundary. By this reason, the mapping h : M [p] → N
can be extended to a mapping in W 1,p(M [p]+1, N). The extension will have
singularity consisting of one point in each ([p] + 1)-dimensional simplex in
M [p]+1. Next, we can extend the mapping to W 1,p(M [p]+2, N). Now, the sin-
gularity is one dimensional. We can continue this process by extending the
mapping to higher dimensional skeletons. Eventually, we obtain a mapping
h ∈ W 1,p(M,N) with the (n − [p] − 1)-dimensional singularity located on a
dual skeleton to M [p].
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Let ui ∈ C∞(M, N) be such that ‖h − ui‖1,p → 0 as i → ∞. From the
Fubini theorem it follows that there is a subsequence uij

such that uij
→ h

in W 1,p on generic [p]-dimensional skeletons, so

uij
→ h in W 1,p(M̃ [p], N) ,

where M̃ [p] is a “tilt” of M [p]. Since h and uij are Lipschitz, from Theorem 2.8
it follows that uij

is homotopic to h on M̃ [p] for all j > j0. Now, from the
homotopy extension theorem (see Theorem 2.9) it follows that the mapping
h|

M̃ [p] admits an extension to a continuous mapping h : M → N . Hence also
h : M [p] → N can be extended to a continuous mapping h′ : M → N .

We proved that every Lipschitz mapping h : M [p] → N admits a contin-
uous extension h′ : M → N . Since every continuous mapping f : M [p] → N
is homotopic to a Lipschitz mapping, another application of the homotopy
extension theorem implies that also f has continuous extension. We proved
the following assertion.

Proposition 2.10. If 1 6 p < n = dim M and C∞(M, N) is dense in
W 1,p(M, N), then every continuous mapping f : M [p] → N can be extended
to a continuous mapping f ′ : M → N .

The following result provides a characterization of the property described
in the above proposition.

We say that M has (k−1)-extension property with respect to N if for every
continuous mapping f ∈ C(Mk, N), f |Mk−1 has a continuous extension to
f̃ ∈ C(M, N).

Proposition 2.11. If 1 6 k < n = dimM , then every continuous mapping
f : Mk → N can be extended to a continuous mapping f ′ : M → N if and
only if πk(N) = 0 and M has the (k − 1)-extension property with respect
to N .

Proof. Suppose that every continuous mapping f : Mk → N has a continuous
extension to f ′ : M → N . Then it is obvious that M has the (k−1)-extension
property with respect to N . We need to prove that πk(N) = 0. Suppose that
πk(N) 6= 0. Let ∆ be a (k+1)-dimensional simplex in Mk+1, and let ∂∆ be its
boundary. It is easy to see that there is a continuous retraction π : Mk → ∂∆.
Let ϕ : ∂∆ → N be a representative of a nontrivial element in the homotopy
group πk(N). Then ϕ cannot be extended to ∆. Hence f = ϕ ◦ π : Mk → N
has no continuous extension to M . We obtain a contradiction.

Now, suppose that πk(N) = 0 and M has the (k − 1)-extension property
with respect to N . Let f : Mk → N be continuous. We need to show that
f can be continuously extended to M . Let f̃ : M → N be a continuous
extension of f |Mk−1 .

The set Mk×[0, 1] is the union of (k+1)-dimensional cells ∆×[0, 1], where
∆ is a k-dimensional simplex in Mk. Denote by (x, t) the points in ∆× [0, 1]
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and define the mapping on the boundary on each cell as follows:

H(x, 0) = f̃(x) for x ∈ ∆,

H(x, 1) = f(x) for x ∈ ∆,

H(x, t) = f̃(x) = f(x) for x ∈ ∂∆.

Because πk(N) = 0, H can be continuously extended to the interior of each
cell. Denote by H : Mk × [0, 1] → N the extension. Now, from the homotopy
extension theorem it follows that f : Mk → N admits a continuous extension
f ′ : M → N . ut

Thus, if f ∈ W 1,p(M, N), 1 6 p < n = dim M , can be approximated
by smooth mappings, then π[p](N) = 0 and for every continuous mapping
g : M [p] → N , g|M [p]−1 has a continuous extension to M .

Actually, this property was used by Hang and Lin [38] to demonstrate
that C∞(CIP3, CIP2) mappings are not dense in W 1,3(CIP3, CIP2) (despite
the fact that π3(CIP2) = 0).

Since the extension property is of topological nature, it is easier to work
with the natural CW structure of CIPn rater than with the triangulation and
the extension property can be equivalently formulated for CW structures.

It is well known that CIPn has a natural CW structure

CIP0 ⊂ CIP1 ⊂ . . . ⊂ CIPn.

If M = CIP3, then M2 = M3 = CIP1. Now, from the elementary algebraic
topology it follows that the identity mapping

i : M3 = CIP1 ⊂ CIP2

cannot be continuously extended to ĩ : CIP3 → CIP2 and since M2 = M3

we also have that i|M2 has no continuous extension. Thus, C∞(CIP3, CIP2)
mappings are not dense in W 1,p(CIP3, CIP2) (see [38, pp. 327-328] for more
details).

It turns out that the above necessary condition for density is also sufficient.
Namely, the following result was proved by Hang and Lin [39].

Theorem 2.12. Assume that M and N are compact smooth Riemannian
manifolds without boundary. If 1 6 p < dim M , then smooth mappings
C∞(M, N) are dense in W 1,p(M, N) if and only if π[p](N) = 0 and M has
the ([p]− 1)-extension property with respect to N .

The following two corollaries easily follow from the theorem (see [39]).

Corollary 2.13. If 1 6 p < n = dim M , k is an integer such that 0 6 k 6
[p] − 1, πi(M) = 0 for 1 6 i 6 k, and πi(N) = 0 for k + 1 6 i 6 [p], then
C∞(M, N) is dense in W 1,p(M,N).
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Corollary 2.14. If 1 6 p < n = dim M , πi(N) = 0 for [p] 6 i 6 n− 1, then
C∞(M, N) is dense in W 1,p(M,N).

In particular, Corollary 2.13 with k = 0 gives the following result that was
previously proved in [26].

Corollary 2.15. If 1 6 p < n = dim M and π1(N) = π2(N) = . . . =
π[p](N) = 0, then C∞(M,N) is dense in W 1,p(M, N).

The reason why we stated this corollary in addition to Corollary 2.13 is
that, in the case of Sobolev mappings from metric spaces supporting Poincaré
inequalities into Lipschitz polyhedra, the homotopy condition from Corol-
lary 2.15 turns out to be necessary and sufficient for density (see Theo-
rem 5.6).

Another interesting question regarding density of smooth mappings is the
question about the density in the sequential weak topology. We do not discuss
this topic here and refer the reader to [26, 36, 37, 39, 40, 66, 67].

3 Sobolev Mappings into Metric Spaces

There were several approaches to the definition of the class of Sobolev map-
pings from a manifold, or just an open set in Rn into a metric space (see, for
example, [2, 24, 49, 55, 70]). The approach presented here is taken from [35]
and it is an elaboration of ideas of Ambrosio [2] and Reshetnyak [70]. One
of the benefits of the construction presented here is that the Sobolev space
of mappings into a metric space is equipped in a natural way with a metric,
so one can ask whether the class of Lipschitz mappings is dense. In the case
of mappings into metric spaces, it does not make sense to talk about smooth
mappings, so we need to consider Lipschitz mappings instead.

Since every metric space X admits an isometric embedding into a Banach
space4 V , the idea is to define the Sobolev space of functions with values into
a Banach space V and then define the Sobolev space of mappings with values
into X as

W 1,p(M, X) = {f ∈ W 1,p(M, V )| f(M) ⊂ X} .

Since W 1,p(M, V ) is a Banach space, this approach equips W 1,p(M, X) with
a natural metric inherited from the norm of W 1,p(M,V ), just like in the
case of Sobolev mappings between manifolds. With this metric at hand, we
can ask under what conditions the class of Lipschitz mappings Lip (M, X) is
dense in W 1,p(M,X).

On the other hand, the approach described above depends on the isometric
embedding of X into V , so it is useful to find another, equivalent and intrinsic

4 Every metric space admits an isometric embedding into the Banach space V = `∞(X)
of bounded functions on X. If, in addition, X is separable, then X admits an isometric
embedding into `∞.
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approach independent of the embedding. In this section, we describe both
such approaches. In our approach, we follow [35], where the reader can find
detailed proofs of results stated here.

For the sake of simplicity, we consider Sobolev functions defined on a
domain in Rn rather than on a manifold, but all the statements can easily
be generalized to the case of Sobolev functions defined on manifolds.

Before we define the Sobolev space of functions with values into a Banach
space, we need briefly recall the notion of the Bochner integral (see [15]).

Let V be a Banach space, E ⊂ Rn a measurable set, and 1 6 p 6 ∞. We
say that f ∈ Lp(E, V ) if

(1) f is essentially separable valued, i.e., f(E \ Z) is a separable subset of
V for some set Z of Lebesgue measure zero,

(2) f is weakly measurable, i.e., for every v∗ ∈ V ∗, 〈v∗, f〉 is measurable;

(3) ‖f‖ ∈ Lp(E).

If f =
k∑

i=1

aiχEi : E → V is a simple function, then the Bochner integral

is defined by the formula

∫

E

f(x) dx =
k∑

i=1

ai|Ei|

and for f ∈ L1(E, V ) the Bochner integral is defined as the limit of integrals
of simple functions that converge to f almost everywhere. The following two
properties of the Bochner integral are well known:

∥∥∥∥∥∥

∫

E

f(x) dx

∥∥∥∥∥∥
6

∫

E

‖f(x)‖ dx

and
〈

v∗,
∫

E

f(x) dx

〉
=

∫

E

〈v∗, f(x)〉 dx for all v∗ ∈ V ∗. (3.1)

In the theory of the Bochner integral, a measurable set E ⊂ Rn can be
replaced by a more general measure space. We need such a more general
setting later, in Sect. 5.

Let now Ω ⊂ Rn be an open set, and let V be a Banach space. It is natural
to define the Sobolev space W 1,p(Ω, V ) using the notion of weak derivative,
just like in the case of real valued functions. We say that f ∈ W 1,p(Ω, V )
if f ∈ Lp(Ω, V ) and for i = 1, 2, . . . , n there are functions fi ∈ Lp(Ω, V )
such that
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∫

Ω

∂ϕ

∂xi
(x)f(x) dx = −

∫

Ω

ϕ(x)fi(x) dx for all ϕ ∈ C∞0 (Ω).

We denote fi = ∂f/∂xi and call these functions weak partial derivatives. We
also write ∇f = (∂f/∂x1, . . . , ∂f/∂xn) and

|∇f | =
(

n∑

i=1

∥∥∥∥
∂f

∂xi

∥∥∥∥
2
)1/2

.

The space W 1,p(Ω, V ) is equipped with the norm

‖f‖1,p =




∫

Ω

‖f‖p




1/p

+




∫

Ω

|∇f |p



1/p

.

It is an easy exercise to show that W 1,p(Ω,V ) is a Banach space.
The problem with this definition is that it is not clear what conditions are

needed to guarantee that Lipschitz functions belong to the Sobolev space.
Indeed, a Lipschitz function f : [0, 1] → V need not be differentiable in
the Fréchet sense at any point, unless V has the Radon–Nikodym property
(see [61, p. 259]). Since we want to work with Sobolev mappings from the
geometric point of view, it is a very unpleasant situation.

There is another, more geometric, definition of the Sobolev space of func-
tions with values in Banach spaces which we describe now. The definition
below is motivated by the work of Ambrosio [2] and Reshetnyak [70].

Let Ω ⊂ Rn be an open set, V a Banach space, and 1 6 p < ∞. The space
R1,p(Ω,V ) is the class of all functions f ∈ Lp(Ω, V ) such that

(1) for every v∗ ∈ V ∗, ‖v∗‖ 6 1 we have 〈v∗, f〉 ∈ W 1,p(Ω);

(2) there is a nonnegative function g ∈ Lp(Ω) such that

|∇〈v∗, f〉| 6 g a.e. (3.2)

for every v∗ ∈ V ∗ with ‖v∗‖ 6 1.

Using arguments similar to those in the proof of the completeness of Lp,
one can easily show that R1,p(Ω,V ) is a Banach space with respect to the
norm

‖f‖R1,p = ‖f‖p + inf ‖g‖p

where the infimum is over the class of all functions g satisfying the inequality
(3.2). Using the definitions and the property (3.1), one can easily prove the
following result (see [35]).

Proposition 3.1. If Ω ⊂ Rn is open and V is a Banach space, then
W 1,p(Ω,V ) ⊂ R1,p(Ω, V ) and ‖f‖R1,p 6 ‖f‖1,p for all f ∈ W 1,p(Ω, V ).
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However, we can prove the opposite inclusion only under additional as-
sumptions about the space V (see [35]).

Theorem 3.2. If Ω ⊂ Rn is open, V = Y ∗ is dual to a separable Banach
space Y , and 1 6 p < ∞, then W 1,p(Ω, V ) = R1,p(Ω, V ) and ‖f‖R1,p 6
‖f‖1,p 6 √

n‖f‖R1,p .

Idea of the proof. One only needs to prove the inclusion R1,p ⊂ W 1,p along
with the estimate for the norm. Actually, the proof of this inclusion is quite
long and it consists of several steps. In the sketch provided below, many
delicate steps are omitted.

By the canonical embedding Y ⊂ Y ∗∗ = V ∗, elements of the Banach
space Y can be interpreted as functionals on V . Observe that if u : [0, 1] →
V is absolutely continuous, then for every v∗ ∈ Y the function 〈v∗, u〉 is
absolutely continuous, so it is differentiable almost everywhere and satisfies
the integration by parts formula. Since the space Y is separable, we have
almost everywhere the differentiability of 〈v∗, u〉 and the integration by parts
for all v∗ from a countable and dense subset of Y . This implies that the
function u : [0, 1] → V is differentiable in a certain weak sense known as the
w∗-differentiability. Moreover, the w∗-derivative u′ : [0, 1] → V satisfies the
integration by parts formula

1∫

0

ϕ′(t)u(t) dt = −
1∫

0

ϕ(t)u′(t) dt.

Using this fact and the Fubini theorem, one can prove that a function
f ∈ Lp(Ω, V ) that is absolutely continuous on almost all lines parallel
to coordinate axes and such that the w∗-partial derivatives of f satisfy
‖∂f/∂xi‖ 6 g almost everywhere for some g ∈ Lp(Ω) belongs to the Sobolev
space W 1,p(Ω, V ), ‖f‖1,p 6 ‖f‖p +

√
n‖g‖p. This fact is similar to the well-

known characterization of the Sobolev space W 1,p(Ω) by absolute continuity
on lines.

At the last step, one proves that if f ∈ R1,p(Ω,V ), then f is absolutely con-
tinuous on almost all lines parallel to the coordinate axes and the w∗-partial
derivatives satisfy ‖∂f/∂xi‖ 6 g, where the function g ∈ Lp(Ω) satisfies
(3.2).

The above facts put together easily imply the result. ut

One can prove the following more geometric characterization of the space
R1,p(Ω,V ) which is very useful (see [35]).

Theorem 3.3. Let Ω ⊂ Rn be open, V a Banach space and 1 6 p < ∞.
Then f ∈ R1,p(Ω,V ) if and only if f ∈ Lp(Ω, V ) and there is a nonnegative
function g ∈ Lp(Ω) such that for every Lipschitz continuous function ϕ :
V → R, ϕ ◦ f ∈ W 1,p(Ω) and |∇(ϕ ◦ f)| 6 Lip (ϕ)g almost everywhere.
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Idea of the proof. One implication is obvious. Indeed, if a function f sat-
isfies the condition described in the above theorem, then it belongs to the
space R1,p(Ω, V ) because for v∗ ∈ V ∗, ‖v∗‖ 6 1, ϕ(v) = 〈v∗, v〉 is 1-Lipschitz
continuous and hence 〈v∗, f〉 ∈ W 1,p(Ω) with |∇〈v∗, f〉| 6 g almost every-
where.

In the other implication, we use the fact that R1,p(Ω,V ) functions are
absolutely continuous on almost all lines parallel to coordinate axes. This
implies that if ϕ : V → R is Lipschitz continuous, then also ϕ ◦ f is ab-
solutely continuous on almost all lines and hence ϕ ◦ f ∈ W 1,p(Ω) by the
characterization of W 1,p(Ω) in terms of absolute continuity on lines. 2

Now we are ready to define the Sobolev space of mappings with values
into an arbitrary metric space. Let Ω ⊂ Rn be open, and let X be a metric
space. We can assume that X is isometrically embedded into a Banach space
V . We have now two natural definitions

W 1,p(Ω, X) = {f ∈ W 1,p(Ω, V )| f(Ω) ⊂ X}

and
R1,p(Ω, X) = {f ∈ R1,p(Ω, V )| f(Ω) ⊂ X}

Both spaces W 1,p(Ω, X) and R1,p(Ω, X) are endowed with the norm metric.
Since every Lipschitz function ϕ : X → R can be extended to a Lipschitz

function ϕ̃ : V → R with the same Lipschitz constant (McShane extension),
we easily see that if X is compact and Ω is bounded, then f ∈ R1,p(Ω, X)
if and only if there is a nonnegative function g ∈ Lp(Ω) such that for every
Lipschitz continuous function ϕ : X → R we have ϕ ◦ f ∈ W 1,p(Ω) and
|∇(ϕ ◦ f)| 6 Lip (ϕ)g almost everywhere.

We assume here the compactness of X and boundedness of Ω to avoid
problems with the Lp integrability of f .

Observe that the last characterization of the space R1,p(Ω, X) is indepen-
dent of the isometric embedding of X into a Banach space.

As a direct application of Theorem 3.2, we have

Theorem 3.4. If Ω ⊂ Rn is open, V = Y ∗ is dual to a separable Banach
space Y , 1 6 p < ∞, and X ⊂ V , then W 1,p(Ω, X) = R1,p(Ω, X).

The most interesting case is that where the space X is separable. In this
case, X admits an isometric embedding to V = `∞ which is dual to a sepa-
rable Banach space, `∞ = (`1)∗ and hence Theorem 3.4 applies.

With a minor effort one can extend the above arguments to the case of
Sobolev spaces defined on a manifold, which leads to the spaces W 1,p(M, X)
and R1,p(M,X).

The following theorem is the main result in [35].
Suppose that any two points x, y ∈ X can be connected by a curve of finite

length. Then d`(x, y) defined as the infimum of lengths of curves connecting
x to y is a metric. We call it the length metric. Since d`(x, y) > d(x, y), it
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easily follows that if X is compact with respect to d`, then X is compact
with respect to d.

Theorem 3.5. Let X be a metric space, compact with respect to the length
metric. If n > 2, then there is a continuous Sobolev mapping f ∈ C0 ∩
W 1,n([0, 1]n, X) such that f([0, 1]n) = X.

3.1 Density

Once the space of Sobolev mappings with values into metric spaces has been
defined, we can ask under what conditions Lipschitz mappings Lip (M, X)
are dense in W 1,p(M, X) or in R1,p(M, X). In this section, we follow [30] and
provide several counterexamples to natural questions and very few positive
results. For the sake of simplicity, we assume that the metric space X is
compact and admits an isometric embedding into the Euclidean space. Thus,
X ⊂ Rν and we simply define

W 1,p(M,X) = {f ∈ W 1,p(M,Rν)| f(M) ⊂ X}.

If M and N are smooth compact manifolds, dim M = n, then, as we know
(Theorem 2.1), smooth mappings are dense in W 1,n(M, N). The key property
of N used in the proof was the existence of a smooth nearest point projection
from a tubular neighborhood of N . The proof employed the fact that the
composition with the smooth nearest point projection is continuous in the
Sobolev norm. It turns out that the composition with a Lipschitz mapping
need not be continuous in the Sobolev norm [30].

Theorem 3.6. There is a Lipschitz function ϕ ∈ Lip (R2) with compact
support such that the operator Φ : W 1,p([0, 1],R2) → W 1,p([0, 1]) defined as
composition Φ(f) = ϕ ◦ f is not continuous for any 1 6 p < ∞.

The proof of the continuity of composition with a smooth function ϕ is
based on the chain rule and continuity of the derivative ∇ϕ. If ϕ is just
Lipschitz continuous, then ∇ϕ is only measurable, so the proof does not work
and the existence of the example as in the theorem above is not surprising
after all (see, however, [64]).

Although the composition with a Lipschitz mapping is not continuous in
the Sobolev norm, we can still prove that Theorem 2.1 is true if we replace
N by a compact Lipschitz neighborhood retract.

We say that a closed set X ⊂ Rν is a Lipschitz neighborhood retract if there
is an open neighborhood U ⊂ Rν of X, X ⊂ U , and a Lipschitz retraction
π : U → X, π ◦ π = π.

The following result was proved in [30].
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Theorem 3.7. Let X ⊂ Rν be a compact Lipschitz neighborhood retract.
Then for every smooth compact n-dimensional manifold M Lipschitz map-
pings Lip (M,X) are dense in W 1,p(M, X) for p > n.

Sketch of the proof. If f ∈ W 1,p(M, X) and fi ∈ C∞(M,Rν) is a smooth
approximation based on the mollification, then ‖fi − f‖1,p → 0 and for all
sufficiently large i the values of fi belong to U (Sobolev embedding for p > n
and Poincaré inequality for p = n), but there is no reason to claim that
π ◦fi → π ◦f = f . To overcome this problem, one needs to construct another
approximation ft ∈ Lip (M,Rν) such that

(1) Lipschitz constant of ft is bounded by Ct;

(2) tp|{f 6= ft}| → 0 as t →∞;

(3) supx∈M dist (ft(x), X) → 0 as t →∞.

The construction of such an approximation is not easy, but once we have it,
a routine calculation shows that ‖f − π ◦ ft‖1,p → 0 as t →∞. Indeed,




∫

M

|∇f −∇(π ◦ ft)|p



1/p

6




∫

{f 6=ft}

|∇f |p



1/p

+




∫

{f 6=ft}

|∇(π ◦ ft)|p



1/p

6




∫

{f 6=ft}

|∇f |p



1/p

+ Ct|{f 6= ft}|1/p → 0 as t →∞.

The proof is complete. ut

The class of Lipschitz neighborhood retracts contains Lipschitz submani-
folds of Rν [63, Theorem 5.13].

In the following example, X is replaced by an n-dimensional submanifold
of the Euclidean space such that it is smooth except for a just one point, and
we no longer have the density of Lipschitz mappings [30].

Theorem 3.8. Let M ⊂ Rν be a closed n-dimensional manifold. Then there
is a homeomorphism Φ ∈ C∞(Rν ,Rν) which is a diffeomorphism in Rν \ {0}
which is identity outside a sufficiently large ball and has the property that
Lipschitz mappings Lip (M, M̃) are not dense in W 1,n(M, M̃), where M̃ =
Φ−1(M).
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Clearly, M̃ cannot be a Lipschitz neighborhood retract. The derivative of
the mapping Φ is zero at 0 and hence derivative of Φ−1 is unbounded in a
neighborhood of 0. This causes M̃ to have highly oscillating smooth “wrin-
kles” which accumulate at one point. In a neighborhood of that point, M̃ is
the graph of a continuous function which is smooth everywhere except for
this point. Actually, the construction is done in such a way that M̃ is W 1,n-
homeomorphic to M , but, due to high oscillations, there is no Lipschitz map-
ping from M onto M̃ , and one proves that this W 1,n-homeomorphism cannot
be approximated by Lipschitz mappings. This actually shows that there is
a continuous Sobolev mapping from M onto M̃ which cannot be approxi-
mated by Lipschitz mappings, a situation which never occurs in the case of
approximation of mappings between smooth manifolds (see Proposition 2.2).

Another interesting question is the stability of density of Lipschitz map-
pings with respect to bi-Lipschitz modifications of the target.

Assume that X and Y are compact subsets of Rν that are bi-Lipschitz
homeomorphic. Assume that M is a closed n-dimensional manifold and Lip-
schitz mappings Lip (M, X) are dense in W 1,p(M,X) for some 1 6 p < ∞.
Are the Lipschitz mappings Lip (M,Y ) dense in W 1,p(M, Y )?

Since bi-Lipschitz invariance is a fundamental principle in geometric anal-
ysis on metric spaces, one expects basic theorems and definitions to remain
unchanged when the ambient space is subject to a bi-Lipschitz transforma-
tion. Although the composition with a Lipschitz mapping is not continuous
in the Sobolev norm, there are several reasons to expect a positive answer to
remain in accordance with the principle.

First, if Φ : X → Y is a bi-Lipschitz mapping, then T (f) = Φ ◦ f induces
bijections

T : W 1,p(M, X) → W 1,p(M,Y ), T : Lip (M, X) → Lip (M, Y ).

Second, have the following positive result [31].

Theorem 3.9. If Lipschitz mappings Lip (M,X) are dense in W 1,p(M, X)
in the following strong sense: for every ε > 0 there is fε ∈ Lip (M, X) such
that |{x| fε(x) 6= f(x)}| < ε and ‖f − fε‖1,p < ε, then Lipschitz mappings
are dense in W 1,p(M, Y ).

The strong approximation property described in the theorem is quite natu-
ral because if f ∈ W 1,p(M,Rν), then for every ε > 0 there is a Lipschitz map-
ping fε ∈ Lip (M,Rν) such that |{x| fε(x) 6= f(x)}| < ε and ‖f − fε‖1,p < ε.
Such an approximation argument was employed in the proof of Theorem 3.7.

The above facts are convincing reasons to believe that the answer to the
stability question should be positive. Surprisingly it is not. The following
counterexample was constructed in [30].

Theorem 3.10. Fix an integer n > 2. There is a compact and connected set
X ⊂ Rn+2 and a global bi-Lipschitz homeomorphism Φ : Rn+2 → Rn+2 with
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the property that for any closed n-dimensional manifold M smooth mappings
C∞(M, X) are dense in W 1,n(M,X), but Lipschitz mappings Lip (M, Y ) are
not dense in W 1,n(M,Y ), where Y = Φ(X).

By smooth mappings C∞(M, X) we mean smooth mappings from M to
Rn+2 with the image contained in X.

The space X constructed in the proof is quite irregular: it is the closure
of a carefully constructed sequence of smooth submanifolds that converges
to a manifold with a point singularity and all the manifolds are connected
by a fractal curve. The space X looks like a stack of pancakes. The proof
involves also a construction of a mapping f ∈ W 1,p(M, X) which can be
approximated by Lipschitz mappings, but the mappings that approximate f
do not coincide with f at any point, so the strong approximation property
from Theorem 3.9 is not satisfied.

4 Sobolev Spaces on Metric Measure Spaces

In order to define the space of Sobolev mappings between metric spaces, we
need first define Sobolev spaces on metric spaces equipped with so-called dou-
bling measures. By the end of the 1970s, it was discovered that a substantial
part of harmonic analysis could be generalized such spaces [14]. This included
the study of maximal functions, Hardy spaces and BMO, but it was only the
zeroth order analysis in the sense that no derivatives were involved. The
study of the first order analysis with suitable generalizations of derivatives,
fundamental theorem of calculus, and Sobolev spaces, in the setting of met-
ric spaces with a doubling measure was developed since the 1990s. This area
is growing and plays an important role in many areas of the contemporary
mathematics [43].

We recommend the reader a beautiful expository paper of Heinonen [44],
where the significance and broad scope of applications of the first order anal-
ysis on metric spaces is carefully explained.

We precede the definition of the Sobolev space with auxiliary definitions
and results. The material of Sects. 4.1–4.5 is standard by now. In our presen-
tation, we follow [29], where the reader can find detailed proofs.

4.1 Integration on rectifiable curves

Let (X, d) be a metric space. By a curve in X we mean any continuous
mapping γ : [a, b] → X. The image of the curve is denoted by |γ| = γ([a, b]).
The length of γ is defined by
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`(γ) = sup

{
n−1∑

i=0

d(γ(ti), γ(ti+1))

}
,

where the supremum is taken over all partitions a = t0 < t1 < . . . < tn = b.
We say that the curve is rectifiable if `(γ) < ∞. The length function associated
with a rectifiable curve γ : [a, b] → X is sγ : [a, b] → [0, `(γ)] given by
sγ(t) = `(γ|[a,t]). Not surprisingly, the length function is nondecreasing and
continuous.

It turns out that every rectifiable curve admits the arc-length parametriza-
tion.

Theorem 4.1. If γ : [a, b] → X is a rectifiable curve, then there is a unique
curve γ̃ : [0, `(γ)] → X such that

γ = γ̃ ◦ sγ . (4.1)

Moreover, `(γ̃|[0,t]) = t for every t ∈ [0, `(γ)]. In particular, γ̃ : [0, `(γ)] → X
is a 1-Lipschitz mapping.

We call γ̃ parametrized by the arc-length because `(γ̃|[0,t]) = t for t ∈
[0, `(γ)].

Now we are ready to define the integrals along the rectifiable curves. Let
γ : [a, b] → X be a rectifiable curve, and let % : |γ| → [0,∞] be a Borel
measurable function, where |γ| = γ([a, b]). Then we define

∫

γ

% :=

`(γ)∫

0

%(γ̃(t)) dt,

where γ̃ : [0, `(γ)] → X is the arc-length parametrization of γ.
It turns out that we can nicely express this integral in any Lipschitz

parametrization of γ.

Theorem 4.2. For every Lipschitz curve γ : [a, b] → X the speed

|γ̇|(t) := lim
h→0

d(γ(t + h), γ(t))
|h| ,

exists almost everywhere and

`(γ) =

b∫

a

|γ̇|(t) dt. (4.2)

Theorem 4.3. Let γ : [a, b] → X be a Lipschitz curve, and let % : |γ| → [0,∞]
be Borel measurable. Then
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∫

γ

% =

b∫

a

%(γ(t))|γ̇|(t) dt.

4.2 Modulus

In the study of geometric properties of Sobolev functions on Euclidean spaces,
the absolute continuity on almost all lines plays a crucial role. Thus, there
is a need to define a notion of almost all curves also in the setting of metric
spaces. This leads to the notion of the modulus of the family of rectifiable
curves, which is a kind of a measure in the space of all rectifiable curves.

Let (X, d, µ) be a metric measure space, i.e., a metric space with a Borel
measure that is positive and finite on every ball.

Let M denote the family of all nonconstant rectifiable curves in X. It may
happen that M = ∅, but we are interested in metric spaces for which the
space M is sufficiently large.

For Γ ⊂ M, let F (Γ ) be the family of all Borel measurable functions
% : X → [0,∞] such that

∫

γ

% > 1 for every γ ∈ Γ .

Now for each 1 6 p < ∞ we define

Mod p(Γ ) = inf
%∈F (Γ )

∫

X

%p dµ.

The number Mod p(Γ ) is called p-modulus of the family Γ .
The following result is easy to prove.

Theorem 4.4. Mod p is an outer measure on M.

If some property holds for all curves γ ∈ M \ Γ , where Mod p(Γ ) = 0,
then we say that the property holds for p-a.e. curve.

The notion of p-a.e.curve is consistent with the notion of almost every line
parallel to a coordinate axis. Indeed, if E ⊂ [0, 1]n−1 is Borel measurable and
we consider straight segments passing through E

ΓE = {γx′ : [0, 1] → [0, 1]n : γx′(t) = (t, x′), x′ ∈ E}

then Mod p(ΓE) = 0 if and only if the (n−1)-dimensional Lebesgue measure
of E is zero. This fact easily follows from the definition of the modulus and
the Fubini theorem.
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4.3 Upper gradient

As before, we assume that (X, d, µ) is a metric measure space. Let u : X → R
be a Borel function. Following [46], we say that a Borel function g : X →
[0,∞] is an upper gradient of u if

|u(γ(a))− u(γ(b))| 6
∫

γ

g (4.3)

for every rectifiable curve γ : [a, b] → X. We say that g is a p-weak upper
gradient of u if (4.3) holds on p-a.e. curve γ ∈ M.

If g is an upper gradient of u and g̃ = g, µ-a.e., is another nonnegative Borel
function, then it may be that g̃ is no longer upper gradient of u. However,
we have the following assertion.

Lemma 4.5. If g is a p-weak upper gradient of u and g̃ is another nonnega-
tive Borel function such that g̃ = g µ-a.e., then g̃ is a p-weak upper gradient
of u too.

It turns out that p-weak upper gradients can be approximated in the Lp

norm by upper gradients.

Lemma 4.6. If g is a p-weak upper gradient of u which is finite almost
everywhere, then for every ε > 0 there is an upper gradient gε of u such that

gε > g everywhere and ‖gε − g‖Lp < ε.

We do not require here that g ∈ Lp.
The following result shows that the notion of an upper gradient is a natural

generalization of the length of the gradient to the setting of metric spaces
(see also Theorem 4.10).

Proposition 4.7. If u ∈ C∞(Ω), Ω ⊂ Rn, then |∇u| is an upper gradient
of u. This upper gradient is the least one in the sense that if g ∈ L1

loc(Ω) is
another upper gradient of u, then g > |∇u| almost everywhere.

4.4 Sobolev spaces N1,p

Let Ñ1,p(X, d, µ), 1 6 p < ∞, be the class of all Lp integrable Borel
functions on X for which there exists a p-weak upper gradient in Lp. For
u ∈ Ñ1,p(X, d, µ) we define

‖u‖Ñ1,p = ‖u‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p-weak upper gradients g of u.
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Lemma 4.6 shows that in the definition of Ñ1,p and ‖ ·‖Ñ1,p , p-weak upper
gradients can be replaced by upper gradients.

We define the equivalence relation in Ñ1,p as follows: u ∼ v if and only
if ‖u − v‖Ñ1,p = 0. Then the space N1,p(X, d, µ) is defined as the quotient
Ñ1,p(X, d, µ)/ ∼ and is equipped with the norm

‖u‖N1,p := ‖u‖Ñ1,p .

The space N1,p was introduced by Shanmugalingam [77].

Theorem 4.8. N1,p(X, d, µ), 1 6 p < ∞, is a Banach space.

One can prove that functions u ∈ N1,p(X, d, µ) are absolutely continuous
on almost all curves in the sense that for p-a.e. γ ∈ M, u ◦ γ̃ is absolutely
continuous, where γ̃ is the arc-length parametrization of γ. This fact, Propo-
sition 4.7, and the characterization of the classical Sobolev space W 1,p(Ω),
by the absolute continuity on lines, lead to the following result.

Theorem 4.9. If Ω ⊂ Rn is open and 1 6 p < ∞, then

N1,p(Ω, | · |,Ln) = W 1,p(Ω)

and the norms are equal.

Here, we consider the space N1,p on Ω regarded as a metric space with re-
spect to the Euclidean metric |·| and the Lebesgue measure Ln. The following
result supplements the above theorem.

Theorem 4.10. Any function u ∈ W 1,p(Ω), 1 6 p < ∞, has a representative
for which |∇u| is a p-weak upper gradient. On the other hand, if g ∈ L1

loc is
a p-weak upper gradient of u, then g > |∇u| almost everywhere.

Both above theorems hold also when Ω is replaced by a Riemannian
manifold, and also, in this case, |∇u| is the least p-weak upper gradient of
u ∈ W 1,p. Actually, one can prove that there always exists a minimal p-weak
upper gradient.

Theorem 4.11. For any u ∈ N1,p(X, d, µ) and 1 6 p < ∞ there exists the
least p-weak upper gradient gu ∈ Lp of u. It is smallest in the sense that if
g ∈ Lp is another p-weak upper gradient of u, then g > gu µ-a.e.

4.5 Doubling measures

We say that a measure µ is doubling if there is a constant Cd > 1 (called
doubling constant) such that 0 < µ(2B) 6 Cdµ(B) < ∞ for every ball
B ⊂ X.
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We say that a metric space X is metric doubling if there is a constant
M > 0 such that every ball in X can be covered by at most M balls of half
the radius.

If µ is a doubling measure on X, then it easily follows that X is metric
doubling. In particular, bounded sets in X are totally bounded. Hence, if X
is a complete metric space equipped with a doubling measure, then bounded
and closed sets are compact.

The following beautiful characterization of metric spaces supporting dou-
bling measures was proved by Volberg and Konyagin [62, 82].

Theorem 4.12. Let X be a complete metric space. Then there is a doubling
measure on X if and only if X is metric doubling.

The doubling condition implies a lower bound for the measure of a ball.

Lemma 4.13. If the measure µ is doubling with the doubling constant Cd

and s = log2 Cd, then

µ(B(x, r))
µ(B0)

> 4−s

(
r

r0

)s

(4.4)

whenever B0 is a ball of radius r0, x ∈ B0 and r 6 r0.

The lemma easily follows from the iteration of the doubling inequality.
The exponent s is sharp as the example of the Lebesgue measure shows.

Metric spaces equipped with a doubling measure are called spaces of ho-
mogeneous type and s = log2 Cd = log Cd/ log 2 is called homogeneous dimen-
sion.

An important class of doubling measures is formed by the so-called n-
regular measures5, which are measures for which there are constants C > 1
and s > 0 such that C−1rs 6 µ(B(x, r)) 6 Crs for all x ∈ X and 0 < r <
diam X. The s-regular measures are closely related to the Hausdorff measure
Hs since we have the following assertion.

Theorem 4.14. If µ is an s-regular measure, then there is a constant C >
1 such that C−1µ(E) 6 Hs(E) 6 Cµ(E) for every Borel set E ⊂ X. In
particular, Hs is s-regular too.

The proof is based on the so-called 5r-covering lemma.
For a locally integrable function g ∈ L1

loc(µ) we define the Hardy–
Littlewood maximal function

Mg(x) = sup
r>0

∫
−

B(x,r)

|g| dµ .

5 Called also Ahlfors–David regular measures.
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Theorem 4.15. If µ is doubling, then

1) µ({x : Mg(x) > t}) 6 Ct−1

∫

X

|g|dµ for every t > 0;

2) ‖Mg‖Lp 6 C‖g‖Lp , for 1 < p < ∞.

4.6 Other spaces of Sobolev type

There are many other definitions of Sobolev type spaces on metric spaces that
we describe now (see [19, 27, 29, 32, 33]). Let (X, d, µ) be a metric measure
space with a doubling measure.

Following [27], for 0 < p < ∞ we define M1,p(X, d, µ) to be the set of all
functions u ∈ Lp(µ) for which there is 0 6 g ∈ Lp(µ) such that

|u(x)− u(y)| 6 d(x, y)(g(x) + g(y)) µ-a.e. (4.5)

Then we set
‖u‖M1,p = ‖u‖p + inf

g
‖g‖p

where the infimum is taken over the class of all g satisfying (4.5). For p > 1,
‖ · ‖1,p is a norm and M1,p(X, d, µ) is a Banach space.

For a locally integrable function u we define the Calderón maximal func-
tion

u#
1 (x) = sup

r>0
r−1

∫
−

B(x,r)

|u− uB | dµ .

Following [32], we define C1,p(X, d, µ) to be the class of all u ∈ Lp(µ) such
that u#

1 ∈ Lp(µ). Again, for p > 1, C1,p(X, d, µ) is a Banach space with
respect to the norm

‖u‖C1,p = ‖u‖p + ‖u#
1 ‖p .

Following [33], for 0 < p < ∞ we say that a locally integrable function u ∈
L1

loc belongs to the space P 1,p(X, d, µ) if there are σ > 1 and 0 6 g ∈ Lp(µ)
such that

∫
−
B

|u− uB | dµ 6 r




∫
−
σB

gp dµ




1/p

for every ball B of radius r. (4.6)

We do not equip the space P 1,p with a norm.
To motivate the above definitions, we observe that u ∈ W 1,p(Rn) satisfies

the pointwise inequality

|u(x)− u(y)| 6 C|x− y|(M|∇u|(x) +M|∇u|(y)) a.e.,
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where M|∇u| is the Hardy–Littlewood maximal function, so g = M|∇u| ∈
Lp for p > 1, and actually one can prove [27] that u ∈ W 1,p(Rn), p > 1,
if and only if u ∈ Lp and there is 0 6 g ∈ Lp such that |u(x) − u(y)| 6
|x− y|(g(x) + g(y)) almost everywhere. Moreover, ‖u‖1,p ≈ ‖u‖p + infg ‖g‖p.
Thus, for p > 1, W 1,p(Rn) = M1,p(Rn). In the case p = 1, M1,1(Rn) is not
equivalent with W 1,1(Rn) [28] (see, however, [57] and Theorem 4.16 below).

The classical Poincaré inequality
∫
−

B(x,r)

|u− uB(x,r)| 6 Cr

∫
−

B(x,r)

|∇u| (4.7)

implies that for u ∈ W 1,p(Rn) the Calderón maximal function is bounded by
the maximal function of |∇u| and hence it belongs to Lp for p > 1. Calderón
[10] proved that for p > 1, u ∈ W 1,p(Rn) if and only if u ∈ Lp and u#

1 ∈ Lp.
Moreover, ‖u‖1,p ≈ ‖u‖p + ‖u#

1 ‖p. Thus, for p > 1, W 1,p(Rn) = C1,p(Rn).
The inequality (4.7) also implies that for p > 1, σ > 1, and u ∈ W 1,p(Rn)

we have

∫
−
B

|u− uB | dx 6 Cr




∫
−
σB

|∇u|p dx




1/p

.

Thus, W 1,p(Rn) ⊂ P 1,p∩Lp. On the other hand, it was proved in [56, 19, 28]
that W 1,p(Rn) = P 1,p ∩ Lp for p > 1.

In the case of general metric spaces, we have the following assertion.

Theorem 4.16. If the measure µ is doubling and 1 6 p < ∞, then

C1,p(X, d, µ) = M1,p(X, d, µ) ⊂ P 1,p(X, d, µ) ∩ Lp(µ) ⊂ N1,p(X, d, µ) .

For a proof see [29, Corollary 10.5 and Theorem 9.3], [32, Theorem 3.4
and Lemma 3.6], and [71].

The so-called telescoping argument (infinite iteration of the inequality
(4.6) on a decreasing sequence of balls) shows that if u ∈ P 1,p(X, d, µ), then

|u(x)− u(y)| 6 Cd(x, y)((Mgp(x))1/p + (Mgp(y))1/p) a.e. (4.8)

(see [33]). A version of the same telescoping argument shows also that for
u ∈ L1

loc

|u(x)− u(y)| 6 Cd(x, y)(u#
1 (x) + u#

1 (y)) a.e.

(see [32, Lemma 3.6]). This implies that C1,p ⊂ M1,p for p > 1. On the other
hand, if u ∈ M1,p and |u(x) − u(y)| 6 d(x, y)(g(x) + g(y)), then a direct
integration with respect to x and y yields
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∫
−
B

|u− uB | dµ 6 4r

∫
−
B

g dµ 6 4r




∫
−
B

gp dµ




1/p

.

Hence M1,p ⊂ P 1,p ∩ Lp and also

u#
1 6 4Mg,

which shows that M1,p ⊂ C1,p for p > 1. Thus, C1,p = M1,p for p > 1. The
case p = 1 of this equality is more difficult (see [29, Theorem 9.3] and [71]).

For the proof of the remaining inclusion P 1,p ∩ Lp ⊂ N1,p see [29, Corol-
lary 10.5].

If a metric space X has no nonconstant rectifiable curves, then g = 0 is
an upper gradient of any u ∈ Lp and hence N1,p(X, d, µ) = Lp(µ). On the
other hand, the theory of Sobolev spaces M1,p, C1,p, and P 1,p is not trivial
in this case. Indeed, a variant of the above telescoping argument leads to
the estimate of |u− uB | by a generalized Riesz potential [33], and hence the
fractional integration theorem implies Sobolev embedding theorems. Many
results of the classical theory of Sobolev spaces extend to this situation (see,
for example, [27, 33, 29]), and we state just one of them.

Theorem 4.17. Let µ be a doubling measure, and let s = log Cd/ log 2 be the
same as in Lemma 4.13. If u ∈ L1

loc(µ), σ > 1, and 0 6 g ∈ Lp(µ), 0 < p < s
are such that the p-Poincaré inequality

∫
−
B

|u− uB | dµ 6 r




∫
−
σB

gp dµ




1/p

holds on every ball B of radius r, then for any p < q < s the Sobolev–Poincaré
inequality




∫
−
B

|u− uB |q
∗
dµ




1/q∗

6 Cr




∫
−

5σB

gq dµ




1/q

holds on every ball B of radius r, where q∗ = sq/(s − q) is the Sobolev
exponent.

This result implies Sobolev embedding for the spaces C1,p, M1,p, and P 1,p,
but not for N1,p.

Other results for C1,p, M1,p, and P 1,p spaces available in the general case of
metric spaces with doubling measure include Sobolev embedding into Hölder
continuous functions, Trudinger inequality, compact embedding theorem, em-
bedding on spheres, and extension theorems.
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4.7 Spaces supporting the Poincaré inequality

Metric spaces equipped with doubling measures are too general for the theory
of N1,p spaces to be interesting. Indeed, if there are no nonconstant rectifiable
curves in X, then, as we have already observed, N1,p(X, d, µ) = Lp(µ). Thus,
we need impose additional conditions on the metric space that will imply,
in particular, the existence of many rectifiable curves. Such a condition was
discovered by Heinonen and Koskela [46].

We say that (X, d, µ) supports a p-Poincaré inequality, 1 6 p < ∞, if the
measure µ is doubling and there exist constants CP and σ > 1 such that
for every ball B ⊂ X, every Borel measurable function u ∈ L1(σB), and
every upper gradient 0 6 g ∈ Lp(σB) of u on σB the following Poincaré type
inequality is satisfied:

∫
−
B

|u− uB | dµ 6 CP r




∫
−
σB

gp dµ




1/p

. (4.9)

Note that this condition immediately implies the existence of rectifiable
curves. Indeed, if u is not constant, then g = 0 cannot be an upper gradient
of u; otherwise, the inequality (4.9) would not be satisfied. More precisely,
we have the following assertion (see, for example, [33, Proposition 4.4]).

Theorem 4.18. If a space X supports a p-Poincaré inequality, then there is
a constant C > 0 such that any two points x, y ∈ X can be connected by a
curve of length less than or equal to Cd(x, y).

Clearly, Rn supports the p-Poincaré inequality for all 1 6 p < ∞. Another
example of spaces supporting Poincaré inequalities is provided by Riemannian
manifolds of nonnegative Ricci curvature [8, 72]. There are, however, many
examples of spaces supporting Poincaré inequalities which carry some mild
geometric structure, but do not resemble Riemannian manifolds [7, 45, 46, 59,
60, 75]. An important class of spaces that support the p-Poincaré inequality is
provided by the so-called Carnot groups [23, 68, 9] and more general Carnot–
Carathéodory spaces [22, 23]. For the sake of simplicity, only the simplest case
of the Heisenberg group is described here.

The Heisenberg group H1 can be identified with R3 ≡ C×R equipped with
the noncommutative group law (z1, t1)·(z2, t2) = (z1+z2, t1+t2+2Im (z1z2)).
It is equipped with a non-Riemannian metric d(x, y) = ‖a−1 · b‖, where
‖(z, t)‖ = (|z|4 + t2)1/2. This metric is bi-Lipschitz equivalent to another
so-called Carnot–Carathéodory metric. The metric d is quite exotic because
the Hausdorff dimension of (H1, d) is 4, while topological dimension is 3.
The applications of the Heisenberg group include several complex variables,
subelliptic equations and noncommutative harmonic analysis [78]. More re-
cently, it was a subject of an intense study from the perspective of geometric
measure theory [21, 9].
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If a space (X, d, µ) supports the p-Poincaré inequality, u ∈ N1,p(X, d, µ),
and 0 6 g ∈ Lp(µ) is an upper gradient of u, then the p-Poincaré inequality
(4.9) is satisfied and hence the Sobolev embedding (Theorem 4.17) holds.
One can actually prove that, in this case, we can take q = p, i.e.,




∫
−
B

|u− uB |p
∗
dµ




1/p∗

6 Cr




∫
−

5σB

gp dµ




1/p

on every ball B of radius r, where 1 6 p < s and p∗ = sp/(s− p) (see [33]).
A direct application of the Hölder inequality shows that if a space supports

a p-Poincaré inequality, then it also supports a q-Poincaré inequality for all
q > p. On the other hand, we have the following important result of Keith
and Zhong [54].

Theorem 4.19. If a complete metric measure space supports a p-Poincaré
inequality for some p > 1, then it also supports a q-Poincaré inequality for
some 1 6 q < p.

This important result implies that, in the case of spaces supporting the
p-Poincaré inequality, other approaches to Sobolev spaces described in the
previous section are equivalent.

Theorem 4.20. If the space supports the p-Poincaré inequality, 1 < p < ∞,
then C1,p(X, d, µ) = M1,p(X, d, µ) = P 1,p(X, d, µ) ∩ Lp(µ) = N1,p(X, d, µ).

Indeed, prior to the work of Keith and Zhong it was known that the spaces
are equal provided that the space supports the q-Poincaré inequality for some
1 6 q < p (see, for example, [29, Theorem 11.3]).

Spaces supporting Poincaré inequalities play a fundamental role in the
modern theory of quasiconformal mappings [46, 47], geometric rigidity prob-
lems [7], nonlinear subelliptic equations (see, for example, [11, 22, 20, 33, 34]),
and nonlinear potential theory [1, 6].

Although the known examples show that spaces supporting a Poincaré
inequality can be very exotic, surprisingly, one can prove that such spaces
are always equipped with a weak differentiable structure [13, 53].

5 Sobolev Mappings between Metric Spaces

Throughout this section, we assume that (X, d, µ) is a metric measure space
equipped with a doubling measure. Let Y be another metric space. The con-
struction of the space of Sobolev mappings between metric spaces N1,p(X,Y )
is similar to that in Sect. 3 with the difference that the classical Sobolev space
is replaced by the Sobolev space N1,p. The space N1,p(X, Y ) was introduced
in [47].



216 Piotr HajÃlasz

Let V be a Banach space. Following [47], we say that F ∈ Ñ1,p(X, V )
if F ∈ Lp(X,V ) (in the Bochner sense) and there is a Borel measurable
function 0 6 g ∈ Lp(µ) such that

‖F (γ(a))− F (γ(b))‖ 6
∫

γ

g

for every rectifiable curve γ : [a, b] → X. We call g an upper gradient of F .
We also define

‖F‖1,p = ‖F‖p + inf
g
‖g‖p,

where the infimum is taken over all upper gradients of F . Now we define
N1,p(X, V ) = Ñ1,p(X,V )/ ∼, where F1 ∼ F2 when ‖F1 − F2‖1,p = 0.

As in the case of N1,p(X, d, µ) spaces, the p-upper gradient can be replaced
by p-weak upper gradient in the above definition. The following two results
were proved in [47] (see also [31] for Theorem 5.2).

Theorem 5.1. N1,p(X,V ) is a Banach space.

Theorem 5.2. Suppose that the space (X, d, µ) supports the p-Poincaré in-
equality for some 1 6 p < ∞. Then for every Banach space V the pair (X, V )
supports the p-Poincaré inequality in the following sense: there is a constant
C > 0 such that for every ball B ⊂ X, for every F ∈ L1(6σB, V ), and for
every 0 6 g ∈ Lp(6σB) being a p-weak upper gradient of F on 6σB the
following inequality is satisfied:

∫
−
B

‖F − FB‖ dµ 6 C(diam B)




∫
−

6σB

gp dµ




1/p

. (5.1)

The Poincaré inequality (5.1) and the standard telescoping argument im-
plies the following pointwise inequality: if F ∈ N1,p(X, V ) and 0 6 g ∈ Lp(µ)
is a p-weak upper gradient of F , then

‖F (x)− F (y)‖ 6 Cd(x, y)((Mgp(x))1/p + (Mgp(y))1/p)

almost everywhere, where, on the right-hand side, we have the maximal func-
tion, just like in the case of the equality (4.8).

In particular, F restricted to the set Et = {x : Mgp < tp} is Lipschitz
continuous with the Lipschitz constant Ct. Using the Lipschitz extension
of F |Et to the entire space X (McShane extension), one can prove [31] the
following assertion.

Theorem 5.3. Suppose that the space (X, d, µ) supports the p-Poincaré in-
equality for some 1 6 p < ∞ and V is a Banach space. If F ∈ N1,p(X,V ),
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then for every ε > 0 there is a Lipschitz mapping G ∈ Lip (X, V ) such that
µ{x : F (x) 6= G(x)} < ε and ‖F −G‖1,p < ε.

As we have seen in the previous section, the Poincaré inequality plays a
crucial role in the development of the theory of Sobolev spaces on metric
spaces. Since such an inequality is also valid for N1,p(X, V ) spaces, Theo-
rem 5.2, many results true for N1,p(X, d, µ) like, for example, Sobolev em-
bedding theorems can be generalized to N1,p(X, V ) spaces (see [47]).

Now, if Y is a metric space isometrically embedded into a Banach space
V , Y ⊂ V , we define

N1,p(X,Y ) = {F ∈ N1,p(X,V ) : F (X) ⊂ Y } .

Since N1,p(X,V ) is a Banach space, N1,p(X,Y ) is equipped with a norm
metric.

If X is an open set in Rn or X is a compact manifold, then the space
N1,p(X, d, µ) is equivalent with the classical Sobolev space (see Theorem 4.9).
Hence, in this case, the definition of N1,p(Ω, Y ) (or N1,p(M, Y )) is equivalent
with that of R1,p(Ω, Y ) (or R1,p(M, Y )) described in Sect. 3 (see [47]).

If F ∈ N1,p(X, Y ), then, according to Theorem 5.3, F can be approxi-
mated by Lipschitz mappings Lip (X,V ) and the question is: Under what
conditions F can be approximated by Lip (X,Y ) mappings?

This is a question about extension of the theory described in Sect. 2 to the
case of Sobolev mappings between metric spaces and it was formulated ex-
plicitly by Heinonen, Koskela, Shanmugalingam, and Tyson [47, Remark 6.9].

An answer to this question cannot be easy because, as soon as we leave the
setting of manifolds, we have many unpleasant counterexamples like those in
Sect. 3. A particularly dangerous situation is created by the lack of stability
with respect to bi-Lipschitz deformations of the target (Theorem 3.10). In-
deed, in most situations, there is no canonical way to choose a metric on Y
and we are free to choose any metric in the class of bi-Lipschitz equivalent
metrics.

An example of spaces supporting the p-Poincaré inequality is provided
by the Heisenberg group and, more generally, Carnot groups and Carnot–
Carathéodory spaces. In this setting, Gromov [23, Sect. 2.5.E] stated as an
open problem the extension of the results from Sect. 2 to the case of map-
pings from Carnot–Carathéodory spaces to Riemannian manifolds. Thus, the
question of Heinonen, Koskela, Shanmugalingam, and Tyson can be regarded
and a more general form of Gromov’s problem.

The following result was proved in [31] (see Theorem 3.9 above).

Theorem 5.4. Suppose that (X, d, µ) is a doubling metric measure space
of finite measure µ(X) < ∞ and Y1, Y2 are two bi-Lipschitz homeomorphic
metric spaces of finite diameter isometrically embedded into Banach spaces
V1 and V2 respectively. Suppose that Lipschitz mappings Lip (X, Y1) are dense
in N1,p(X,Y1), 1 6 p < ∞, in the following strong sense: for any f ∈
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N1,p(X, Y1) and ε > 0 there is fε ∈ Lip (X, Y1) such that µ({x : f(x) 6=
fε(x)}) < ε and ‖f − fε‖1,p < ε. Then the Lipschitz mappings Lip (X, Y2)
are dense in N1,p(X,Y2).

This result shows that, in the case in which we can prove strong density,
there is no problem with the bi-Lipschitz invariance of the density.

It turns out that also White’s theorem (Theorem 2.5) and the density
result of Schoen and Uhlenbeck (Theorems 2.1 and 3.7) can be generalized to
the setting of mappings between metric spaces. Theorem 5.4 plays a crucial
role in the proof.

Theorem 5.5. Let (X, d, µ) be a metric measure space of finite measure
µ(X) < ∞ supporting the p-Poincaré inequality. If p > s = log Cd/ log 2 and
Y is a compact metric doubling space which is bi-Lipschitz homeomorphic to
a Lipschitz neighborhood retract of a Banach space, then for every isometric
embedding of Y into a Banach space Lipschitz mappings Lip (X, Y ) are dense
in N1,p(X, Y ). Moreover, for every f ∈ N1,p(X, Y ) there is ε > 0 such that
if f1, f2 ∈ Lip (X, Y ) satisfy ‖f − fi‖1,p < ε, i = 1, 2, then the mappings f1

and f2 are homotopic.

5.1 Lipschitz polyhedra

By a simplicial complex we mean a finite collection K of simplexes in some
Euclidean space Rν such that

1) if σ ∈ K and τ is a face of σ, then τ ∈ K;

2) if σ, τ ∈ K, then either σ∩ τ = ∅ or σ∩ τ is a common face of σ and τ .

The set |K| =
⋃

σ∈K σ is called a rectilinear polyhedron. By a Lipschitz
polyhedron we mean any metric space which is bi-Lipschitz homeomorphic to
a rectilinear polyhedron. The main result of [31] reads as follows.

Theorem 5.6. Let Y be a Lipschitz polyhedron, and let 1 6 p < ∞. Then the
class of Lipschitz mappings Lip (X,Y ) is dense in N1,p(X,Y ) for every met-
ric measure space X of finite measure that supports the p-Poincaré inequality
if and only if π1(Y ) = π2(Y ) = . . . = π[p](Y ) = 0.

Observe that the density of Lipschitz mappings does not depend on the
particular choice of the metric in Y in the class of bi-Lipschitz equivalent met-
rics, only on the topology of Y . This is because, in the proof of Theorem 5.6,
one shows the strong approximation property described in Theorem 5.4. The-
orem 5.6 can be regarded as a partial answer to the problems of Heinonen,
Koskela, Shanmugalingam, and Tyson and also to the problem of Gromov.
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Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl.
Math. 49, 1081-1144 (1996)



220 Piotr HajÃlasz
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